Search results for "lattice field theory"
showing 10 items of 150 documents
Heavy quarkonium: progress, puzzles, and opportunities
2011
A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the $B$-factories and CLEO-c flo…
Lattice QCD and the anomalous magnetic moment of the muon
2019
The anomalous magnetic moment of the muon, a_mu, has been measured with an overall precision of 540 ppb by the E821 experiment at BNL. Since the publication of this result in 2004 there has been a persistent tension of 3.5 standard deviations with the theoretical prediction of a_mu based on the Standard Model. The uncertainty of the latter is dominated by the effects of the strong interaction, notably the hadronic vacuum polarisation (HVP) and the hadronic light-by-light (HLbL) scattering contributions, which are commonly evaluated using a data-driven approach and hadronic models, respectively. Given that the discrepancy between theory and experiment is currently one of the most intriguing …
Nonperturbative renormalization and O(a) -improvement of the nonsinglet vector current with Nf=2+1 Wilson fermions and tree-level Symanzik improved g…
2019
In calculating hadronic contributions to precision observables for tests of the Standard Model in lattice QCD, the electromagnetic current plays a central role. Using a Wilson action with $\mathrm{O}(a)$ improvement in QCD with ${N}_{\mathrm{f}}$ flavors, a counterterm must be added to the vector current in order for its on-shell matrix elements to be $\mathrm{O}(a)$ improved. In addition, the local vector current, which has support on one lattice site, must be renormalized. At $\mathrm{O}(a)$, the breaking of the $\mathrm{SU}({N}_{\mathrm{f}})$ symmetry by the quark mass matrix leads to a mixing between the local currents of different quark flavors. We present a nonperturbative calculation…
Nucleon isovector charges and twist-2 matrix elements with Nf=2+1 dynamical Wilson quarks
2019
We present results from a lattice QCD study of nucleon matrix elements at vanishing momentum transfer for local and twist-2 isovector operator insertions. Computations are performed on gauge ensembles with nonperturbatively improved ${N}_{f}=2+1$ Wilson fermions, covering four values of the lattice spacing and pion masses down to ${M}_{\ensuremath{\pi}}\ensuremath{\approx}200\text{ }\text{ }\mathrm{MeV}$. Several source-sink separations (typically $\ensuremath{\sim}1.0$ to $\ensuremath{\sim}1.5\text{ }\text{ }\mathrm{fm}$) allow us to assess excited-state contamination. Results on individual ensembles are obtained from simultaneous two-state fits across all observables and all available sou…
The hadronic contribution to the running of the electromagnetic coupling and the electroweak mixing angle
2019
37th International Symposium on Lattice Field Theory, Wuhan, China, 16 Jun 2019 - 22 Jun 2019; PoS(LATTICE 2019)010 (2019).
5 QCD on the Lattice
2008
Since Wilson’s seminal papers of the mid-1970s, the lattice approach to Quantum Chromodynamics has become increasingly important for the study of the strong interaction at low energies, and has now turned into a mature and established technique. In spite of the fact that the lattice formulation of Quantum Field Theory has been applied to virtually all fundamental interactions, it is appropriate to discuss this topic in a chapter devoted to QCD, since by far the largest part of activity is focused on the strong interaction. Lattice QCD is, in fact, the only known method which allows ab initio investigations of hadronic properties, starting from the QCD Lagrangian formulated in terms of quark…
Determination of the pole position of the lightest hybrid meson candidate
2019
Mapping states with explicit gluonic degrees of freedom in the light sector is a challenge, and has led to controversies in the past. In particular, the experiments have reported two different hybrid candidates with spin-exotic signature, pi1(1400) and pi1(1600), which couple separately to eta pi and eta' pi. This picture is not compatible with recent Lattice QCD estimates for hybrid states, nor with most phenomenological models. We consider the recent partial wave analysis of the eta(') pi system by the COMPASS collaboration. We fit the extracted intensities and phases with a coupled-channel amplitude that enforces the unitarity and analyticity of the S-matrix. We provide a robust extracti…
SU(3)-breaking corrections to the hyperon vector couplingf1(0)in covariant baryon chiral perturbation theory
2009
This work was partially supported by the MEC Grant No. FIS2006-03438 and the European Community- Research Infrastructure Integrating Activity Study of Strongly Interacting Matter (Hadron-Physics2, Grant Agreement 227431) under the Seventh Framework Programme of EU. L. S. G. acknowledges support from the MICINN in the Program ‘‘Juan de la Cierva.’’ J. M. C. acknowledges the same institution for an FPU grant.
Recent results on the meson and baryon spectrum from lattice QCD
2017
Recent lattice results on the meson and baryon spectrum with a focus on the determination of hadronic resonance masses and widths using a combined basis of single-hadron and hadron-hadron interpolating fields are reviewed. These mostly exploratory calculations differ from traditional lattice QCD spectrum calculations for states stable under QCD, where calculations with a full uncertainty estimate are already routinely performed. Progress and challenges in these calculations are highlighted.
Spectrum of the QCD flux tube in 3d SU(2) lattice gauge theory
2009
Abstract Evidence from the lattice suggests that formation of a flux tube between a q q ¯ pair in the QCD vacuum leads to quark confinement. For large separations between the quarks, it is conjectured that the flux tube has a behavior similar to an oscillating bosonic string, supported by lattice data for the groundstate q q ¯ potential. We measure the excited states of the flux tube in 3d SU ( 2 ) gauge theory with three different couplings inside the scaling region. We compare our results to predictions of effective string theories.